IP Control Plane (GMPLS, MPLS, RSVP, QOS, Inter-domain Signaling/Routing)

Application to Next Generation Peering and Disaster Recovery

Tom Lehman

University of Southern California (USC)

Information Sciences Institute (ISI)

The Big Picture — Why do we want a unified IP Control Plane?

- Deterministic paths across heterogeneous network technologies
- Multiple administrative domains with AAA

IP Control Plane applied to Next Generation Peering and Disaster Recovery

- Many applications for a unified IP Control Plane which provides:
 - rapid provisioning of dedicated resource paths
 - across administrative domains
 - with level of Authentication, Authorization, Accounting (AAA) people trusted
- Peering between routers not directly connected
- "Link" protection at lambda, layer 2, or layer 3
- Backup paths
 - Provisioned in advance or in a realtime response to an event
- Confidence to use dedicated resource paths for mission critical/emergency communications

MPLS Control Plane

- MPLS Control Plane
 - LSP Signaling
 - o LDP, BGP
 - Traffic Engineered LSP Signaling
 - o RSVP-TE
 - TE-Routing
 - o OSPF-TE, ISIS-TE

MPLS LSP

- Upstream LSRs send Label Request Messages
- ■Downstream LSRs advertise associated label mappings upstream

MPLS TE LSP

- ■Ingress initiates path setup, request propagates to egress
- ■Egress responds with label, propagates back to ingress
- ■QOS resource reservations can be made as part of process

MPLS TE Link Information

- TE Link State Advertisement
 - Link Type
 - Point-to-point or multi-point
 - Link ID
 - Router ID or DR
 - Local interface IP address
 - Remote interface IP address
 - Traffic engineering metric
 - Maximum bandwidth
 - Maximum reservable bandwidth
 - Unreserved Bandwidth
 - Administrative Group

MPLS Applications

- Traffic Engineering
- QOS provisioned LSPs
- Core Routing (turning off BGP)
- VPN/VPWS/VPLS services
- L3 VPNs
 - draft-ietf-ppvpn-rfc2457bis
- L2 VPNs(VPWS)
 - draft-kompella-pppvn-l2vpn
 - draft-ietf-pwe2-control-protocol (martini)
- L2 VPNs(VPLS)
 - draft-lassserre-vkompella-ppvpn-vpls
- Foundation for GMPLS

GMPLS Control Plane

- GMPLS Extensions
 - GMPLS Signaling
 - o GMPLS RSVP-TE
 - GMPLS Routing
 - o GMPLS OSPF-TE, GMPLS ISIS-TE
 - Link Management
 - o LMP, LMP-WDM, LMP-SONET

GMPLS

■GMPLS adds support for Lambdas, SONET/SDH, Ports

GMPLS Routing Extensions

- Extensions to OSPF and ISIS to supply required information in opaque LSAs for
 - Sonet/SDH
 - Lambdas
 - Fiber port switching
- Resource availability already covered TE extensions for MPLS
- Other Features (unnumbered interfaces, link protection type, srlg, interface switching type, graceful restart)

End to End GMPLS Transport What is missing?

Inter-domain Routing and Signaling Research/Standards Activities

IETF CCAMP

- draft-vasseur-ayyangar-ccamp-inter-area-AS-TE-00.txt
 - Multiple TE LSP Types (contiguous, stitched, nested)
 - Two inter-area/AS path computation methods (per area/AS, distributed path computation element)
 - Path Computation Element (Isr which computes interarea/AS path for a TE LSP for which it is not the head-end)
 - Traffic Engineering Database (TED)
 - Little about routing protocols

IETF TEWG

- MPLS Inter-AS Traffic Engineering requirements (draft-ietf-tewg-interas-mpls-te-req-06.txt)
- MPLS Inter-Area Traffic Engineering requirements (draft-ietf-tewg-interarea-mpls-te-req-06.txt)

Inter-domain Routing and Signaling Research/Standards Activities

- OIF
 - intra-carrier E-NNI routing, hierarchical link state based on OSPF modifications
 - DDRP (Domain to Domain Routing Protocol)
 - "Experimental" work for Supercomm demo June in Chicago
- Various Research Projects
 - Canarie
 - Optical BGP, User Controlled LightPaths
 - CHETTAH
 - DRAGON
 - OMNInet

Inter-domain Routing and Signaling Research/Standards Activities

- Issues/Considerations
 - Overlay (OIF) vs Peer-to-Peer (IETF)
 - Inter-domain routing "style"
 - OSPF link state multi-area
 - BGP path vector
 - PNNI hierarchical link state

Control Plane Standards

- IETF GMPLS
 - RSVP-TE (signaling)
 - OSPF-TE (Intra-Domain Routing)
 - ISIS-TE (Intra-Domain Routing
 - LMP (Link Management Protocol)
- ITU ASON (Architecture for Automatically Switched Optical Networks)
 - PNNI
 - RSVP-TE
 - CR-LDP
 - Discovery for SONET/SDH

Control Plane Standards

- OIF (Optical Internetworking Forum)
 - UNI (User Network Interface)
 - OSPF-TE based hierarchical link state routing protocol – DDRP (Domain to Domain Routing Protocol)

Control Plane Status Summary

- Intra Domain
 - Standards available
 - o IETF, OIF, ITU
 - Not all in agreement/compatible
 - Dynamic provisioning can be accomplished (with correct equipment)
 - Much work still required on Scheduling and AAA
- Inter Domain
 - No mature standards
 - Several efforts in early stages in IETF and OIF
 - Much work still required on Scheduling and AAA

Resource Scheduling

- Separate path computation and resource reservation for scheduling vs instantiation
 - How do we reserve resources for future timeslot?
 - How do we implement AAA?
 - How do we monitor/enforce resource utilization?
 - How do we integrate instantiation/scheduling activities
 - Design work underway

Authentication, Authorization, Accounting

- How do we accomplish AAA for network resources? Including across domains?
- Related areas?
 - Open Grid Service Architecture (OSGA)
 - RFC 2903 (Generic AAA Architecture)
 - RFC 2904 (Authorization Framework)
 - Global Grid
 - Grid Security Infrastructure (GSI)
 - Generic Security Service API (GSS-API), RFC 2078
 - Java/Jini

Summary

- Many applications for a unified IP Control Plane related to next generation peering and disaster recovery
- Significant research/work still required in the InterDomain routing, signaling, and AAA
- How can LSN/JET help
 - Encourage agencies/networks to work together on these interoperation issues

The End